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Part I:
Sources of 

Discrimination in AI

Job Selection Algorithms 

Source: https://www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine

3

4



08.09.2022

3

Medical AI 

Source: Obermeyer et al., 366 Science 447 (2019)

Dynamics of Smart Cities

Entry to public buildings
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Dynamics of Smart Cities

 via Face Recognition 
Technology (FRT)

FRT Issues
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Concepts

1) Artificial Intelligence (AI)
• Definitions:

Russel/Norvig, 
2016, 2

2) Machine Learning (ML):
• “Learning by example”

AI               ML

Mitchell, 1997, 2

Concepts
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Supervised learning

•Data set: fully labeled (output for each input)
• Training data - test data

Maini/Sabri, 2017, 46

Application

The Sources of Algorithmic Discrimination

Algorithmic Discrimination

bias in the model formation
process: biased modeling

unequal distribution of qualities
between groups: unequal ground truth

incorrect labeling
→ Amazon

feature/target
selection 
→ health

sampling bias
→ FRT

unequal score 
distribution

→ car insurance

unequal error
distribution
→ COMPAS
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Part II:
Algorithmic 

Discrimination under 
EU Law

The Law of Algorithmic Discrimination

Anti-Discrimination Law (Hacker, 2018; cf. also Zuiderveen Borgesius, 2020; 
Wachter et al., 2020 & 2021)
• Coverage of algorithmic discrimination
• Indirect discrimination: apparently neutral practice puts protected 

group at specific disadvantage
• Justification: legitimate aim and discriminatory practice    

proportionate 
 Biased modeling → (-)
 Unequal ground truth → (+) if ground truth approximates reality

→ Problem of differentiation between sources of discrimination
 Enforcement problems: proving differential treatment: 

no access to data and model (CJEU, C-415/10, Meister)
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The Law of Algorithmic Discrimination

Data Protection Law (Hacker, 2018)

•Data protection principles: unjustified discrimination as unfair 
data processing, Art. 5(1)(a) GDPR (Article 29 Working Party, 2018)

•Art. 22(3) GDPR: automated DM: bias reduction as necessary 
measures to safeguard rights and freedoms
•Public Enforcement

 Fines, Art. 83 GDPR
 Algorithmic audits, Art. 58(1)(b) GDPR 

 Enforcement integration & conceptual convergence

Emergent Case Law
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The Motherhood Case - Facts 

R (o.t.a The Motherhood Plan) v Her Majesty’s Treasury
[2021] EWHC 309 (Admin) (17 February 2021) 
• 2020: ADM system to determine level of pandemic aid in 

UK to self-employed business persons
 No human in the loop
 80 % of average trading profits of preceding 3 years
 Problem: also when partially on maternity leave

Man

Woman Maternity
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The Motherhood Case – Discrimination? 

Art. 14 ECHR + UK Equality Act (Public Sector 
Equality Duty) 
EWHC: no direct or indirect discrimination: 
•“disadvantage […] flows from an absence of or 
reduction in a person’s income in the past” 
(para. 62)

 “disadvantage is not caused by the [ADM 
system]” (para. 67)

The Motherhood Case – Discrimination? 

Quite unconvincing (cf. Allen/Masters, 2021a)

•Disadvantage: yes
Reduction of past income is precisely due to 

motherhood
Data was factually correct, but sample taken in the 

wrong way (cf. sampling bias) 
Necessary disadvantage of women
Problem inherent to this ADM system, not 

external
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The Motherhood Case - Justification 

EWHC: ADM justified
(not manifestly without 
reasonable foundation)
•Quicker 
•Cheaper
• Simpler
•More fraud-resistant 
than human DM (para. 77-85)

The Motherhood Case - Justification 

Convincing? Certainly not
•ADM always quicker, cheaper, “simpler” 

and more straight-forward 
•No room for hard cases
Cannot be the right measure
Rather:
•Case of biased modeling (counting maternity leave)
 Generally not justified
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The Motherhood Case - Justification 

In Motherhood:
• Speed and cost: suitability & necessity of ADM (+)
• But not fair balance (cf. Campbell, 2021, p. 1217; Hacker, 2018)
 Data set incomplete/biased 
 AI operator: reasonable efforts to obtain more balanced data 

 Here: simple fix: 
Self-identification: maternity leave
Human review and manual calculation of past profits

 Feasibility: implemented for grant eligibility, not for level of payment
 Unjustified discrimination
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The Deliveroo Italy Case - Facts

• “Frank”: slot allocation system, with 
advantage for those with high scores
• Calculation: past performance based on
 Number of booked but missed slots
 Participation in peak demand slot 

Friday evening between 8 and 10 PM
Both difficult to reconcile with family 

and sick children

The Deliveroo Italy Case - Facts

Bologna Labor Court, Case 
2949/2019:
• Indirect discrimination (disability, 

union activity = strike; women)
•No justification: 
No acknowledgement of hard 

cases = good reasons for 
unavailability 
Child sickness, disability, strike 
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Remaining Problems

• Enforcement
 Knowing of and proving 

prima-facie discrimination

• Ex-ante prevention instead 
of ex-post liability

Does the new EU AI legislation change 
anything?
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Structure of the Proposed AI Act (AIA)

Four Risk Levels

Banned AI
 Art. 5 

High-Risk AI
 Product Safety

Minimal Risk AI
 No new rules

Limited Risk AI
 Transparency

Embedded AI 
Safety Products
 Art. 6(1)

Stand-Alone AI
Updated List
 Annex III

High-Risk AI Systems

Include (Annexes II, III AIA):
• FRT
• Employment
•Medical AI 
• Credit scoring
• Social benefits
• Judiciary 
 Our cases

Do not include:
• E-Commerce
• Search Engines
 Digital Markets Act   

(DMA)
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Non-Discrimination in High-Risk AI Systems

ML pipeline:

• Art. 10 AIA: training data 
regime
 Correctness
 Representativeness
Hacker, A Legal Framework 
for AI Training Data (2021)

• Art. 15 AIA: 
performance 
 Accuracy
 Mitigation of biased 

feedback

• Art. 14 AIA: 
human in the loop

• Art. 11/13 AIA: 
transparency

Non-Discrimination in High-Risk AI Systems

ML pipeline:

• Art. 10: training data 
regime
 Correctness
 Representativeness 

• Art. 15: performance 
measures
 Accuracy
 Mitigation of biased 

feedback
https://spectrum.ieee.org/in-2016-microsofts-racist-chatbot-revealed-the-dangers-of-online-conversation
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Digital Markets Act (DMA)
• For gatekeepers (Google, Amazon, Meta)
• Art. 6(5) DMA: transparent, fair and non-discriminatory 

rankings
 Justification necessary
ND in e-commerce

Remaining Problems

• Enforcement
 Knowing of and proving prima-

facie discrimination

• Ex-ante prevention instead of 
ex-post liability

• Still problematic
 Self-certification in AIA
 Restriction to high-risk AI and 

gatekeepers

• Better in AIA
 But depending on operator 

goodwill & effective deterrence

AIA + DMA
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Part III:
Algorithmic Fairness

Algorithmic Fairness

Definitions of fairness: 2 main groups (Dwork, 2012;   
Friedler et al., 2016; Pessach/Shmueli, 2020)

1) Individual Fairness: similar input → similar output
Aristotle, Nicomachean Ethics, Book V, § 3, 1131a10 
CJEU: equality before the law, Art. 20 ChFR

2) Group Fairness: e.g., same positive selection rate 
for each group (statistical parity)

Outcome-egalitarian concept (Binns, 2018)
 Impossibility of indirect discrimination

Trade-off necessary: more GF ↔ less IF
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Bridging the Divide: Our Model

Zehlike/Hacker/Wiedemann, Matching Code and Law, 34 
Data Mining and Knowledge Discovery 2020, 163:
•Continuous interpolation between measures of individual 

and group fairness
•Parameter θ ∈ [0;1]: degree of approximation of group 

distributions
 θ = 0  individual differences are fully preserved (IF)
 θ = 1  group distributions fully mapped onto barycenter (GF)

•Minimal information loss for decision maker through 
optimal transport

LSAT Scores (ethnicity): descriptive statistics

Source: Zehlike/Hacker/Wiedemann, 34 Data Mining and Knowledge Discovery 2020, 163

Score

Fre-
quency
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LSAT Scores (ethnicity) for θ = 0

Source: Zehlike/Hacker/Wiedemann, 34 Data Mining and Knowledge Discovery 2020, 163

Fre-
quency

Score

LSAT Scores (ethnicity) for θ = 0.5

Source: Zehlike/Hacker/Wiedemann, 34 Data Mining and Knowledge Discovery 2020, 163

Fre-
quency

Score
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LSAT Scores (ethnicity) for θ = 1

Source: Zehlike/Hacker/Wiedemann, 34 Data Mining and Knowledge Discovery 2020, 163

Fre-
quency

Score

Current Extension

Together with Zalando (German Amazon):
• Trade-off between 3 fairness measures:
 Calibration
 Balance for negative class (false positives)
 Balance for positive class (false negatives)

COMPAS
E-commerce products (Art. 6(5) DMA: 

fair ranking provision, see Hacker, KI und 
DMA [= AI and DMA], GRUR 2022, 1278)
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Part IV:
Legal Constraints  

for Algorithmic Fairness

The Legality of Algorithmic Fairness

Legal Constraints

Processing Sensitive 
Group Membership Data

Algorithmic Affirmative
Action

Art. 9(1) GDPR 
 illegal?

Now: Art. 10(5) AI Act

Positive Action Doctrine
 constraints
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Algorithmic Fairness Procedures

types of algorithmic fairness

pre-processing:
training/input data

in-processing:
loss function

post-processing:
output distribution

Algorithmic Affirmative Action
CJEU guidelines:
1) During selection phase (results):

Marschall: restrictive criteria: only on the basis 
of all available information of the specific case
→ human in the loop, no automa�c re-ranking

2) Before selection phase (opportunity): 
Badeck: lenient criteria: even quota possible 

post-
processing
approaches

pre-/in-
processing
approaches

?

?
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The Legality of Algorithmic Fairness in ADL

Correcting Illegal 
Discrimination

Reversing Under-
representation

Pre-selection
Process

Final Selection
Decisions

?

Redesigning
Model Precision

Modifying Model 
Application

Criteria for Lawful Fairness Interventions 

Changing the model in the concrete operation
Example: algorithmically modifying application data (pre-
processing) or applicant scores (post-processing)
• Individual detriment  Marschall revisited
•Admissibility: Balance of rights and interests
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Criteria for Lawful Fairness Interventions 

Model change during selection in favor of 
an underrepresented group justified:

 Difficulty to measure merit across groups 
(e.g., ground truth skewed)
 Individual fairness does not work

 Group-based substantive equality > merit-based formal individual equality 
 Basic capabilities for later successful competition on the merits 

e.g., basic education; only exceptionally: credit scoring or job application

 But: human review generally necessary
 “Substantive equality of opportunity”

Conclusion

1) Emergent case law on AI and discrimination
2) Enforcement bottleneck
3) Many algorithmic fairness metrics in Computer Science
4) Our algorithmic model: 

a) Bridges individual and group fairness
b) While minimizing information loss

5) Replication of fairness divide in affirmative action law
a) Legal constraints on algorithmic fairness
b) Incentives for Human-Machine Teaming to mitigate 

underrepresentation
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Thank you!

hacker@europa-uni.de

Selected Publications by Philipp Hacker
• Teaching Fairness to Artificial Intelligence: Existing and Novel Strategies 

against Algorithmic Discrimination under EU Law, 55 Common Market 
Law Review 1143-1186 (2018), open access: 
https://ssrn.com/abstract=3164973
• Matching Code and Law: Achieving Algorithmic Fairness with Optimal 

Transport, 34 Data Mining and Knowledge Discovery 163-200 (2020) 
(Meike Zehlike, Philipp Hacker and Emil Wiedemann), open access: 
https://arxiv.org/abs/1712.07924
• A Legal Framework for AI Training Data, 13 Law, Innovation and 

Technology 257-301 (2021), open access:
https://doi.org/10.1080/17579961.2021.1977219
• KI und DMA – Zugang, Transparenz und Fairness für KI-Modelle 

in der digitalen Wirtschaft, GRUR 2022, 1278-1285 (engl. in preparation)

51

52



08.09.2022

27

Additional Sources
• Allen, R. & Masters, D. (2021a). The pandemic, social benefits, and automated 

decision making (ADM): Just because it is quicker to use a machine, is it 
consistent with the principle of non-discrimination?, AI Law Hub Blog (19 April 
2021), https://ai-lawhub.com/2021/04/19/the-pandemic-social-benefits-and-
automated-decision-making-adm-just-because-it-is-quicker-to-use-a-
machine-is-it-consistent-with-the-principle-of-non-discrimination/.
• Allen, R. & Masters, D. (2021b). An Italian lesson for Deliveroo: Computer 

programmes do not always think of everything!, AI Law Hub Blog (18 January 
2021), https://ai-lawhub.com/2021/01/18/an-italian-lesson-for-deliveroo-
computer-programmes-do-not-always-think-of-everything/. 
• Article 29 Data Protection Working Party (2018). Guidelines on automated 

individual decision-making and profiling for the purposes of Regulation 
2016/679, WP251rev.01, https://ec.europa.eu/newsroom/article29/redirection/document/49826. 

Additional Sources
• Campbell, M. (2021). The austerity of lone motherhood: discrimination law 

and benefit reform. Oxford Journal of Legal Studies, 41(4), 1197-1226.
• Maini, V., & Sabri, S. (2017). Machine learning for humans. 

https://www.dropbox.com/s/e38nil1dnl7481q/machine_learning.pdf?dl=0. 
• Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
• Russell, S. J. (2010). Artificial Intelligence: A Modern Approach. 3rd. ed. 

Pearson Education.
• Wachter, S., Mittelstadt, B., & Russell, C. (2020). Bias preservation in machine 

learning: the legality of fairness metrics under EU non-discrimination law. W. 
Va. L. Rev., 123, 735.
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Additional Sources

• Wachter, S., Mittelstadt, B., & Russell, C. (2021). Why fairness cannot be 
automated: Bridging the gap between EU non-discrimination law and AI. 
Computer Law & Security Review, 41, 105567.
• Zuiderveen Borgesius, F. J. (2020). Strengthening legal protection against 

discrimination by algorithms and artificial intelligence. The International 
Journal of Human Rights, 24(10), 1572-1593.
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